ON THE CLASSIFICATION OF (n-k+1)-CONNECTED EMBEDDINGS OF n-MANIFOLDS INTO (n+k)-MANIFOLDS IN THE METASTABLE RANGE

LIU RONG

ABSTRACT. For an (n-k+1)-connected map f from a connected smooth n-manifold M to a connected smooth (n+k)-manifold V, where M is closed, we work out the isotopy group $[M \subset V]_f$ in the metastable range $n \le 2k-4$. To prove our results, we develop the Hurewicz-type theorems which provide us with the efficient methods of computing the homology groups with local coefficients from the homotopy groups.

0. Introduction

Let M^n and V^{n+k} be connected smooth manifolds of dimensions n and n+k and $f: M \to V$ a smooth map. Assume that M is closed. Designate $[M \subset V] = \pi_1(V^M, \operatorname{Emb}(M, V), f)$ the set of isotopy classes of embeddings with a specific homotopy to f where V^M means the space of smooth maps from M to V and $\operatorname{Emb}(M, V)$ is the subspace of smooth embeddings of M in V. It is well known that $[M \subset V]_f$ is an abelian affine group in the metastable range $n \leq 2k-4$ and is called the isotopy group (cf. [11]).

Suppose that $f: M \to V$ is (n-k+1)-connected. A theorem due to Haefliger [6] asserts that f is homotopic to an embedding for $n \le 2k-3$. In this case the set $[M \subset V]_f$ is nonempty and it is meaningful to enumerate it. Without loss of generality, we assume that $f: M^n \to V^{n+k}$ is an (n-k+1)-connected embedding and we identify M with $f(M) \subset V$. Then our results could be stated as follows.

0.1. **Theorem.** Let $f: M^n \to V^{n+k}$ be an (n-k+1)-connected embedding. If $n \le 2k-4$, k < n, then

$$[M^{n} \subset V^{n+k}]_{f} = \begin{cases} H_{n-k+2}(V, M; Z_{2}) & \text{if } k \text{ is even}, \\ H_{n-k+2}(V, M; Z_{V}) & \text{if } k \text{ is odd}, \end{cases}$$

where Z_V is the orientation local system of manifold V.

This theorem generalizes the main result of A. Haefliger and M. Hirsch [8]; in the case that $V^{n+k} = R^{n+k}$, it can be deduced from the result of N. Habegger [4] as well.

Received by the editors January 24, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57R40, 57R52, 55N25, 55Q05.

Key words and phrases. Embedding, isotopy classification, twisted Hurewicz theorems.

In the following theorems we denote by $\pi_1^+(M)$ the subgroup of $\pi_1(M)$ whose elements are represented by the orientation-preserving loops of M. Let f_{π} be the homomorphism $f_*: \pi_1(M) \to \pi_1(V)$ induced by f.

0.2. **Theorem.** Let $f: M^n \to V^{2n}$ be a 1-connected embedding. Suppose that $\ker f_{\pi} \subseteq \pi_1^+(M)$ and $n \ge 4$. Then

$$[M^n \subset V^{2n}]_f = \begin{cases} H_2(V, M; Z_2) & \text{if } n \text{ is even}, \\ H_2(V, M; Z_V) & \text{if } n \text{ is odd}, \end{cases}$$

where Z_V is the orientation sheaf of manifold V.

0.3. **Theorem.** Let $f: M^n \to V^{2n}$ be a 1-connected embedding, where $n \ge 4$. Suppose that $\ker f_\pi \not\subseteq \pi_1^+(M)$ and $w_1(V) = 0$. Then

$$[M^n \subset V^{2n}]_f = \begin{cases} Z \oplus H_2^{(+)}(V, M; Z_2) & \text{if } n \text{ is even}, \\ H_2(V, M; Z_2) & \text{if } n \text{ is odd}, \end{cases}$$

where $H_2^{(+)}(V, M; \mathbb{Z}_2)$ is the kernel of composition

$$H_2(V, M; Z_2) \xrightarrow{\partial} H_1(M; Z_2) \xrightarrow{w_1(M)} Z_2.$$

The above theorems generalize the results of A. Haefliger [7] in the case that $V^{2n} = R^{2n}$.

Now assume V is a nonorientable manifold and denote by $p\colon \overline{V}\to V$ its orientation double covering. Let $T\colon \overline{V}\to \overline{V}$ be the nontrivial covering transformation of p. Set $\overline{M}=p^{-1}(M)$. (Notice that in general \overline{M} is not the orientation covering of M.) We have

0.4. **Theorem.** Let $f: M^n \to V^{2n}$ be a 1-connected embedding, where $n \ge 4$. Suppose that $\ker f_{\pi} \nsubseteq \pi_1^+(M)$ and $w_1(V) \ne 0$. Then there is an exact sequence

$$0 \to \frac{H_2^{(+)}(\overline{V}, \overline{M}; Z_2)}{\langle x + T_*(x) \colon x \in H_2^{(+)}(\overline{V}, \overline{M}; Z_2) \rangle}$$
$$\to [M^n \subset V^{2n}]_f \to Z_2 \to 0 \quad \text{if } n \text{ is even},$$

and an isomorphism

$$[M^n \subset V^{2n}]_f \approx H_2(V, M; Z_2)$$
 if n is odd.

In this paper we refer to the singularity approaches [2, 9, 12, 13] which convert the enumeration of $[M^n \subset V^{n+k}]_f$ into the calculation of

$$H_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)})$$

for an (n-k+1)-connected map f. In §1, we recall the definition of the topological space $\Lambda_f \times_2 S^\infty$ and discuss its homotopy properties. Our Theorem 0.1 is proved in §2 by using a relative twisted Hurewicz theorem—Proposition 2.1. Sections 3-5 are engaged in the proof of our Theorems 0.2-0.4. The following twisted Hurewicz theorem is established at the beginning of §3 and afterwards showed very powerful in our computations of the first homology groups with local coefficients.

3.1. **Theorem.** Let X be a path-connected topological space. Suppose that Z_{ϕ} is a local system of integers on X characterized by a homomorphism $\phi \colon \pi_1(X) \to \operatorname{Aut} Z$. Then there is an isomorphism

$$H_1(X; Z_{\phi}) \cong \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2),$$

where $\pi_1^+ = \ker \phi$, $\pi_1^- = \pi_1(X) \setminus \pi_1^+$, $[\pi_1^+, \pi_1^+]$ is the commutative group of π_1^+ , $[\pi_1^-]^2$ is the normal subgroup of π_1^+ generated by the elements x^2 for $x \in \pi_1^-$.

1. Preliminaries

Let $f\colon M^n\to V^{n+k}$ be an embedding. Denote by $\Lambda_f=P(V;M,M)$ the space of paths in V from M to M. Naturally, there is an inclusion $M\subset P(V;M,M)$ induced by the constant paths of $M\subset V$. Let S^∞ be the unit sphere in an infinite-dimensional Hilbert space. Designate $\Lambda_f\times_2 S^\infty$ as the quotient of the product $\Lambda_f\times S^\infty$ by the involution $(\sigma,\alpha)\to (\sigma^{-1},-\alpha)$. Certainly, $M\times P^\infty$ (the quotient of $M\times S^\infty$) is a subspace of $\Lambda_f\times_2 S^\infty$.

Let τM and τV be vector bundles over $\mathfrak{S}_2 \tau M = (\tau M \times \tau M) \times_2 S^{\infty}$ and $\mathfrak{S}_2 M = (M \times M) \times_2 S^{\infty}$, respectively. Hence there is a virtual bundle $\Psi(f) = p_1^*(\mathfrak{S}_2 \tau M) - p_2^*(\tau V \tilde{\otimes} \lambda) \oplus \varepsilon^{n-k}$ over $\Lambda_f \times_2 S^{\infty}$ where $p_1 \colon \Lambda_f \times_2 S^{\infty} \to \mathfrak{S}_2 M$ and $p_2 \colon \Lambda_f \times_2 S^{\infty} \to V \times P^{\infty}$ are given by $p_1([\sigma, \alpha]) = [\sigma(-1), \sigma(1), \alpha]$ and $p_2([\sigma, \alpha]) = (\sigma(0), [\alpha])$. Summing up the results of [2, 9, 12, 13], we have

- 1.1. **Proposition.** Let $f: M^n \to V^{n+k}$ be an embedding, $n \le 2k 4$. Then there is a bijection $\alpha: [M \subset V]_f \to \Omega_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; \Psi(f))$.
- 1.2. **Proposition.** There is a natural isomorphism

$$A: \pi_p(P(V; M, M), M, *) \to \pi_{p+1}(V, M, *)$$

compatible with the actions of $\pi_1(M,*)$ on them for $p \geq 1$.

Proof. Set $\pi_p(P(V; M, M), M, *) = [D^p, S^{p-1}, s; P(V, M, M), M, *]$. The exponential law asserts that $\pi_p(P(V; M, M), M, *)$ is in one-one correspondence with the homotopy classes of maps $\phi: I \times D^p$, $\partial(I \times D^p) \to V$, M such that $\phi(t, s) = *$ and $\phi(t, x) = \phi(0, x) = \phi(1, x)$ for $t \in I$, $x \in S^{p-1}$. It is clear that D^{p+1} is homeomorphic to the quotient space of $I \times D^p$ in which (t, x) is identified with (0, x) for each $(t, x) \in I \times S^{p-1}$. ϕ can be factored by $\overline{\phi}: D^{p+1}$, S^p , $s \to V$, M, *. It follows that there is a 1-1 correspondence A between $\pi_p(P(V; M, M), M, *)$ and $\pi_{p+1}(V, M, *)$. Because the above operation is compatible with the Co-H structures of D^p and D^{p+1} and their S^1 -coproducts (cf. [14, pp. 45–51]), A is an isomorphism commuting with the actions of $\pi_1(M, *)$. Q.E.D.

1.3. **Proposition.** If $f: M^n \to V^{n+k}$ is (n-k+1)-connected for $n \le 2k-4$, then there is a bijection

$$\alpha'\colon [M\subset V]_f\to H_{n-k+1}(\Lambda_f\times_2 S^\infty\,;\, M\times P^\infty\,;\, Z_{\Psi(f)})\,,$$

where $Z_{\Psi(f)}$ is the local system on $\Lambda_f \times_2 S^{\infty}$ associated with $w_1(\Psi(f))$.

Proof. Observe that $(P(V; M, M) \times S^{\infty}, M \times S^{\infty})$ is a double covering of $(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty})$. From Proposition 1.2, that $(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty})$ is (n-k)-connected. By Proposition 5.1 of [2], there is an isomorphism

 $\mu: \Omega_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; \Psi(f)) \to H_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)})$. Hence α' is obtained as $\mu \circ \alpha$, where α is given in Proposition 1.1. Q.E.D.

To calculate the homology group in the above proposition, we should first determine the homomorphism $w_1(\Psi(f))$: $\pi_1(\Lambda_f \times_2 S^{\infty}) \to Z_2$.

1.4. **Lemma.** $\pi_1(P(V; M, M, *))$ is isomorphic to the semi product $\pi_2(V, M, *) \times_h \pi_1(M, *)$ where h is the action of $\pi_1(M, *)$ on $\pi_2(V, M, *)$. Proof. Set $\pi_1(P(V; M, M), *) = [I, \dot{I}; P(V; M, M), *]$. The exponential law gives a one-one correspondence

$$\pi_1(P(V; M, M), *) \leftrightarrow [J \times I, \dot{J} \times I, J \times \dot{I}; V, M, M, *].$$

Since $J \times I$ can be identified with the oriented $I \times I$, every

$$[g] \in [J \times I, \dot{J} \times I, J \times \dot{I}; V, M, M, *]$$

naturally determines an element of

$$[g]' \in [J \times I, \partial(J \times I), (-1, 0); V, M, *] = \pi_2(V, M)$$

and an element $[g|_{-1\times I}] \in \pi_1(M)$. Conversely, for every

$$[g] \in [J \times I, \partial(J \times I), (-1, 0); V, M, *]$$
 and $[\alpha] \in \pi_1(M)$

we can first rearrange $\partial g = g|_{\partial(J\times I)}$ by a homotopy to a map $\dot{g}': \partial(J\times I) \to M$ such that $\dot{g}'|_{-1\times I} = \alpha$, $\dot{g}'|_{1\times I} = \partial g * \alpha$, and $\dot{g}'(J\times \dot{I}) = *$. The homotopy extension property shows that g is homotopic to g' such that $\partial g' = \dot{g}'$. The homotopy $[g'] \in [J\times I, \dot{J}\times I, J\times \dot{I}; V, M, M, *]$ is uniquely determined by $[g] \in \pi_2(V, M)$ and $[\alpha] \in \pi_1(M)$.

It follows that there is a one-one correspondence between $\pi_1(P(V; M, M))$ and $\pi_2(V, M) \times \pi_1(M)$. Observing the following figure,

$$\begin{array}{c} a' \boxed{x'} \partial x' \cdot a' \\ a \boxed{x} \partial x \cdot a \end{array} \Rightarrow aa' \boxed{x \cdot h_a(x')}$$

we know that $\pi_1(P(V; M, M))$ induces a product on $\pi_2(V, M) \times \pi_1(M)$ as $(x, a) \cdot (x', a') = (x \cdot h_a(x'), aa')$ and the lemma is valid. Q.E.D.

1.5. **Proposition.** There is an isomorphism

$$\pi_1(\Lambda_f \times_2 S^{\infty}) \cong (\pi_2(V, M) \times_h \pi_1(M)) \times_{\phi} T_2,$$

where T_2 is the multiplicative group of two elements 1 and m, ϕ is the action of T_2 on $\pi_2(V, M) \times_h \pi_1(M)$ given by $\phi(m)(x, a) = (x^{-1}, \partial x \cdot a)$.

Proof. Since the double covering $P(V; M, M) \times S^{\infty} \to \Lambda_f \times_2 S^{\infty}$ induces a partially split exact sequence $1 \to \pi_1(P(V; M, M)) \to \pi_1(\Delta_f \times_2 S^{\infty}) \to T_2 \to 1$ and the involution $T: P(V; M, M) \to P(V; M, M)$ defined by $T(\sigma) = \sigma^{-1}$ gives the semiproduct $\pi_1(\Delta_f \times_2 S^{\infty}) \approx \pi_1(P(V; M, M) \times_{\phi} T_2$, this proposition follows from Lemma 1.4. Q.E.D.

Recall from [11] that $\pi_1(\mathfrak{S}_2M)=(\pi_1(M)\times\pi_1(M))\times_\phi T_2$ where ϕ is the action of T_2 on $\pi_1(M)\times\pi_1(M)$ given by $\phi(m)(a,b)=(b,a)$. Consider the figure in the proof of Lemma 1.1. The fibration $p_1\colon \Lambda_f\times_2 S^\infty\to\mathfrak{S}_2M$ induces $p_{1\pi}\colon \pi_1(\Lambda_f\times_2 S^\infty)\to \pi_1(\mathfrak{S}_2M)$ given by $p_{1\pi}((x,a,1))=(a,\partial x\cdot a;1)$ and $p_{1\pi}((x,a,m))=(a,\partial x\cdot a;m)$. From Proposition 2.3 in [12], it follows that

1.6. **Proposition.** The local system $Z_{\Psi(f)}$ is determined by a homomorphism

$$\Psi \colon \pi_1(\Lambda_f \times_2 S^{\infty}) \to \operatorname{Aut} Z$$

such that

$$\Psi((x, a, 1)) = (-1)^{\partial x} (-1)^{f_{\pi}(a)},$$

$$\Psi((x, a, m)) = (-1)^{k} (-1)^{\partial x} (-1)^{f_{\pi}(a)} \quad \text{for } x \in \pi_{2}(V, M), \ a \in \pi_{1}(M)$$

$$\text{where } (-1)^{\partial x} = (-1)^{w_{1}(M)[\partial x]}, \ (-1)^{f_{\pi}(a)} = (-1)^{w_{1}(V)[f_{\pi}(a)]}.$$

2. Proof of Theorem 0.1

First of all, we discuss a generalization of relative Hurewicz theorem.

Let (X, Y) be a pair of topological spaces. For convenience, we assume that X and Y are path connected and locally path connected and that $\pi_1(X, *) = \pi_1(Y, *)$. Then we have

2.1. **Proposition.** Let A_{ϕ} be a local system on X characterized by a right action $\phi \colon A \times \pi_1(X) \to A$. If (X, Y) is (n-1)-connected for $n \ge 2$, then there is an isomorphism

$$h: H_n(X, Y; A_{\phi}) \approx A \otimes_{\pi_1(Y)} \pi_n(X, Y).$$

Proof. Let \widetilde{X} be the universal covering of X with covering projection $p \colon \widetilde{X} \to X$. Then $\widetilde{Y} = p^{-1}(Y)$ is the universal covering of Y, and $\pi_1(Y)$ operates properly on the pair $(\widetilde{X},\widetilde{Y})$. Set $\pi = \pi_1(Y)$. Since the singular complex $\Delta(\widetilde{X})/\Delta(\widetilde{Y})$ is π -free, Theorem 8.4 in Chapter XVI of [1] is valid. It follows that there is a convergent spectral sequence

$$H_p(\pi, H_q(\widetilde{X}, \widetilde{Y}; A)) \underset{p}{\Rightarrow} H_n(X, Y, A_{\phi}).$$

Because (X, Y) is (n-1)-connected, $E_{p,q}^2 = 0$ if p < 0 or q < n. The exact sequence of Theorem 5.12a in Chapter XV of [1] is reduced to an isomorphism $E_{0,n}^2 \approx H_n$. This with the universal-coefficient formula and classical Hurewicz theorem yields the proposition as follows,

$$\begin{split} H_n(X\,,\,Y\,;\,A_\phi) &\approx H_0(\pi\,,\,H_n(\widetilde{X}\,,\,\widetilde{Y}\,;\,A)) \approx [H_n(\widetilde{X}\,,\,\widetilde{Y}\,;\,A)]_\pi \\ &\approx A \otimes_\pi H_n(\widetilde{X}\,,\,\widetilde{Y}) \approx A \otimes_\pi \,\pi_n(X\,,\,Y). \quad \text{Q.E.D.} \end{split}$$

2.2. Thus we have reduced the proof of Theorem 0.1 to the computation of the local system $Z_{\Psi(f)}$ and the relative homotopy group $\pi_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty})$ with the action of $\pi_1(M \times P^{\infty})$ on it.

The local system $Z_{\Psi(f)}$ was determined by Proposition 2.3 of [12]. Its restriction on $\pi_1(M\times P^\infty)=\pi_1(M)\times T_2$ is characterized by a homomorphism $\Psi\colon \pi_1(M\times P^\infty)\to \operatorname{Aut} Z$ such that

$$\Psi(a, 1) = \Psi(e)(a, a; 1) = (-1)^{f_{\pi}(a)},$$

$$\Psi(a, m) = \Psi(e)(a, a; m) = (-1)^k \cdot (-1)^{f_{\pi}(a)}$$

for $a \in \pi_1(M)$, where $T_2 = \{1, m\}$ is the multiplicative group $\pi_1(P^{\infty})$ of two elements.

Now denote by * the basepoint of M, s the basepoint of S^{∞} . We take (*, s) to the basepoint of $\Lambda_f \times S^{\infty}$. Let $p: \Lambda_f \times S^{\infty} \to \Lambda_f \times_2 S^{\infty}$ be the

quotient map and let $p_1: \Lambda_f \times S^{\infty} \to \Lambda_f = P(V; M, M)$ be the projection to the first factor. They induce isomorphisms of relative homotopy groups

$$\pi_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}) \stackrel{p_{\bullet}}{\longleftarrow} \pi_{n-k+1}(\Lambda_f \times S^{\infty}, M \times S^{\infty})$$

$$\stackrel{p_{1\bullet}}{\longrightarrow} \pi_{n-k+1}(\Lambda_f, M) \stackrel{A}{\longrightarrow} \pi_{n-k+2}(V, M).$$

where A is given in Proposition 1.2. It is clear that the composition $A \circ p_{1*} \circ p_*^{-1}$ is commutative with the operations of $\pi_1(M)$.

Now we consider the action h_m of

$$m \in \pi_1(P^\infty) \subset \pi_1(M \times P^\infty)$$

on $\pi_{n-k+1}(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty})$. Represent m by a loop (c_*, ρ) : $I \to M \times P^{\infty}$ where c_* is the constant loop of M on *, ρ is a loop of P^{∞} based at [s] whose lifting to S^{∞} is a path $\tilde{\rho}$ from s to -s. Denote by \tilde{m} the path class of $(c_*, \tilde{\rho})$ in $M \times S^{\infty}$. Lifting h_m to the double covering p, we get $h_{\tilde{m}} \cdot T_*$ which is fitted with the following commutative diagram:

where $T: \Lambda_f \times S^{\infty} \to \Lambda_f \times S^{\infty}$ and $\Lambda_f \to \Lambda_f$ are involutions defined in §1. From 1.3, 2.1, and 2.2, it follows that

2.3. **Proposition.** Let $f: M^n \to V^{n+k}$ be (n-k+1)-connected for $n \le 2k-4$ and k < n. Then $[M \subset V]_f$ is the quotient group of $\pi_{n-k+2}(V, M)$ by the subgroup $\{(-1)^{f(a)}x - h_a(x): x \in \pi_{n-k+2}(V, M), a \in \pi_1(M)\}$ if k is odd and the tensor product of Z_2 with the quotient group of $\pi_{n-k+2}(V, M)$ by the subgroup $\{x - h_a(x): x \in \pi_{n-k+2}(V, M), a \in \pi_1(M)\}$ if k is even where $h_a: \pi_{n-k+2}(V, M) \to \pi_{n-k+2}(V, M)$ is the action of $a \in \pi_1(M)$.

This with Proposition 2.1 yields our Theorem 0.1.

3. Proof of Theorem 0.2

Since Proposition 2.1 is not valid for n = 1, we are obliged to seek another way to calculate $H_1(X, Y; Z_{\phi})$. This problem can be converted into computation of twisted abstract homology groups by the exact sequence

$$H_1(Y; Z_{\phi|Y}) \to H_1(X; Z_{\phi}) \to H_1(X, Y; Z_{\phi}) \to H_0(Y; Z_{\phi|Y}) \to H_0(X; Z_{\phi}).$$

The following theorem offers such a calculation method.

3.1. **Theorem.** Let X be a path-connected topological space. Suppose that Z_{ϕ} is a local system of integers on X characterized by a homomorphism $\phi \colon \pi_1(X) \to \operatorname{Aut} Z$. Then there is an isomorphism

$$H_1(X; Z_{\phi}) \cong \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2),$$

where $\pi_1^+ = \ker \phi$, $\pi_1^- = \pi_1(X) \setminus \pi_1^+$, $[\pi_1^+, \pi_1^+]$ is the commutative group of π_1^+ , and $[\pi_1^-]^2$ is the normal subgroup of π_1^+ generated by the elements x^2 for $x \in \pi_1^-$.

Proof. Let $C^0_*(X; Z_\phi)$ denote the chain complex of X with the local coefficients Z_ϕ generated by singular simplexes $u \colon \Delta^n \to X$, all of whose vertices are at the basepoint of X. We define $H_n(X; Z_\phi)$ as the nth homology group of $C^0_*(X; Z_\phi)$. We shall construct a homomorphism $\Psi \colon H_1(X; Z_\phi) \to \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2)$ and its inverse. For convenience let $[\sigma]$ denote the homotopy class of a loop σ , and let $[\sigma]$ be the equivalent class of $[\sigma] \mod [\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2$.

Choose a singular 1-simplex $\rho \in C_1^0(X; Z_\phi)$ such that $[\rho] \in \pi_1^-$ if it exists. Then $Z_1(X; Z_\phi)$ is a free abelian group generated by singular simplexes σ such that $[\sigma] \in \pi_1^+$ and the differences $\sigma - \rho$ such that $[\sigma] \in \pi_1^-$. Thus there is a homomorphism $\psi \colon Z_1(X; Z_\phi) \to \pi_1^+/([\pi_1^-, \pi_1^+] \cdot 0u[\pi_1^-]^2)$ defined by $\psi(\sigma) = \overline{[\sigma]}$ for $[\sigma] \in \pi_1^+$, and $\psi(\sigma - \rho) = \overline{[\sigma * \rho]}$ for $[\sigma] \in \pi_1^-$. Now we prove ψ annihilates the subgroup $\mathrm{Im}(\partial \colon C_2^0(X; Z_\phi) \to C_1^0(X; Z_\phi)) \subset Z_1(X; Z_\phi)$.

Notice that for any 2-simplex $u: \Delta^2 \to X$ in $C_2^0(X; Z_{\phi})$ we have $\partial u = \phi([u^{(2)}])u^{(0)} - u^{(1)} + u^{(2)}$ where $u^{(i)}$ is the opposite face of the *i*th vertex of u. Certainly their homotopy classes satisfy the relation $[u^{(1)}] = [u^{(2)}] \cdot [u^{(0)}]$.

Now if $[u^{(i)}] \in \pi_1^+$ for i = 0, 1, 2, then

$$\psi(\partial u) = \overline{[u^{(0)}] \cdot [u^{(1)}]^{-1} \cdot [u^{(2)}]} = \overline{e}.$$

If $[u^{(2)}] \in \pi_1^+$ and $[u^{(0)}] \in \pi_1^-$, then $[u^{(1)}] \in \pi_1^-$. In this case, we replace ∂u by $(u^{(0)} - \rho) - (u^{(1)} - \rho) + u^{(2)}$. It follows that

$$\psi(\partial u) = \overline{[u^{(0)} * \rho] \cdot [u^{(1)} * \rho]^{-1} \cdot [u^{(2)}]} = \overline{e}.$$

If $[u^{(2)}]$ and $[u^{(0)}] \in \pi_1^-$, then $[u^{(1)}] \in \pi_1^+$ and $\partial u = (u^{(2)} - \rho) - (u^{(0)} - \rho) - u^{(1)}$. Thus

$$\psi(\partial u) = \overline{[u^{(2)} * \rho] \cdot [u^{(0)} * \rho]^{-1} \cdot [u^{(1)}]^{-1}}$$

$$= \overline{[u^{(2)}][u^{(0)}]^{-1}[u^{(0)}]^{-1} \cdot [u^{(2)}]^{-1}}$$

$$= \overline{([u^{(2)}] \cdot [u^{(0)}]^{-1} \cdot [u^{(2)}]^{-1})^2} = \overline{e}.$$

If $[u^{(2)}]$ and $[u^{(1)}] \in \pi_1^-$, then $[u^{(0)}] \in \pi_1^+$ and $\partial u = -u^{(0)} + (u^{(2)} - \rho) - (u^{(1)} - \rho)$. Therefore

$$\psi(\partial u) = \overline{[u^{(0)}]^{-1} \cdot [u^{(2)} * \rho] \cdot [u^{(1)} * \rho]^{-1}}
= \overline{[u^{(0)}]^{-1} [u^{(2)}] [u^{(0)}]^{-1} \cdot [u^{(2)}]^{-1}}
= \overline{([u^{(0)}]^{-1} \cdot [u^{(2)}])^2 \cdot ([u^{(2)}]^{-1})^2} = \overline{e}.$$

Summing up the above discussion, we obtain a homomorphism $\Psi: H_1(X; Z_{\phi}) \to \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2)$ as the quotient of ψ . In the rest of the proof, we define a homomorphism $\Phi: \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2) \to H_1(X; Z_{\phi})$ and show that Φ is an inverse of Ψ .

Let σ be a loop such that $[\sigma] \in \pi_1^+$. Then σ is a cycle in $Z_1(X; Z_\phi)$ as well and we denote by $\{\sigma\}$ its homology class in $H_1(X; Z_\phi)$. Hence there is a homomorphism $\varphi \colon \pi_1^+ \to H_1(X; Z_\phi)$ given by $\varphi([\sigma]) = \{\sigma\}$. It is easy to verify that φ annihilates the commutator group of π_1^+ , and it is sufficient to prove $\varphi(x^2) = 0$ for $x \in \pi_1^-$. In fact, let $u \colon \Delta^2 \to X$ be a 2-simplex such that $u^{(2)} = u^{(0)}$ representing x; then $[u^{(1)}] = x^2$, and $\partial u = -u^{(0)} - u^{(1)} + u^{(2)} = -u^{(1)}$. It follows that $0 = \{u^{(1)}\} = \varphi(x^2)$. Taking the quotient of φ , we obtain a homomorphism

$$\Phi: \pi_1^+/([\pi_1^+, \pi_1^+] \cdot [\pi_1^-]^2) \to H_1(X; Z_{\phi}).$$

It is clear that $\Psi \cdot \Phi = I$. Now let us consider $\Phi \cdot \Psi$. If σ is a 1-simplex in $C_1^0(X; Z_\phi)$ such that $[\sigma] \in \pi_1^+$, then $\Phi \cdot \Psi(\{\sigma\}) = \Phi(\overline{[\sigma]}) = \{\sigma\}$. If σ is a 1-simplex in $C_1^0(X; Z_\phi)$ such that $[\sigma] \in \pi_1^-$, then we can construct a 2-simplex $u : \Delta^2 \to X$ such that $\sigma^{(2)} = \sigma$, $u^{(0)} = \rho$, and $u^{(1)} = \sigma * \rho$. Hence $\partial u = -\rho - \sigma * \rho + \sigma$ and

$$\Phi \cdot \Psi(\{\sigma - \rho\}) = \Phi(\overline{[\sigma * \rho]}) = \{\sigma * \rho\} = \{\sigma - \rho\}.$$

Therefore we have $\Phi \cdot \Psi = I$ and the theorem. Q.E.D.

3.2. **Corollary.** In addition to the hypotheses of Theorem 3.1, suppose that $i: Y \subset X$ is a path connected subspace. Then

$$H_{1}(X, Y; Z_{\phi}) \cong \begin{cases} \frac{\pi_{1}^{+}(X)}{[\pi_{1}^{+}(X), \pi_{1}^{+}(X)] \cdot [\pi_{1}^{-}(X)]^{2} \cdot i_{\pi}(\pi_{1}^{+}(Y))} + Z & \textit{if } \phi \neq 1 \textit{ and } \\ \phi \cdot i_{\pi} = 1, \\ \frac{\pi_{1}^{+}(X)}{[\pi_{1}^{+}(X), \pi_{1}^{+}(X)] \cdot [\pi_{1}^{-}(X)]^{2} \cdot i_{\pi}(\pi_{1}^{+}(Y))} & \textit{otherwise.} \end{cases}$$

Now we start on our proof of 0.1.

3.3. Lemma.

$$[(x, e, 1), (e, a, 1)] = (x \cdot h_a(x^{-1}), e, 1),$$

$$[(x, e, 1), (e, a, m)] = (x \cdot h_a(x), a \cdot \partial x^{-1} \cdot a^{-1}, 1),$$

$$(x, a, 1)^2 = (x \cdot h_a(x), a^2, 1),$$

$$(x, a, m)^2 = (x \cdot h_a(x^{-1}), a \cdot \partial x \cdot a, 1).$$

Proof. It can be directly verified. Q.E.D.

For convenience, let $\pi_2^{(+)}(V,M)$ denote $\partial^{-1}(\pi_1^{(+)}(M))$ for $\partial:\pi_2(V,M)\to \pi_1(M)$ and let $\pi_1^{(+)}(M)$ denote $f_\pi^{-1}(\pi_1^{(+)}(V))$ for $f_\pi:\pi_1(M)\to \pi_1(V)$. Set $\pi_2^{(-)}(V,M)=\pi_2(V,M)\backslash \pi_2^{(+)}(V,M)$, $\pi_1^{(-)}(M)=\pi_1(M)\backslash \pi_1^{(+)}(M)$. Generally $\pi_1^{(\pm)}(M)$ are different from $\pi_1^{\pm}(M)$.

From the assumption that $\ker f_\pi\subseteq \pi_1^+(M)$, it follows that $\pi_2^{(-)}(V,M)=\phi$. By Proposition 1.3, the orientability of $\Psi(f)$ is completely determined by its restriction on $M\times P^\infty$.

If n is even, then $\pi_1^+(M\times P^\infty)=\pi_1^{(+)}(M)\times T_2$ and $\pi_1^+(\Lambda_f\times_2 S^\infty)=\pi_2(V,M)\cdot\pi_1^+(M\times P^\infty)$. In this case, $[\pi_1^+(\Lambda_f\times_2 S^\infty),\pi_1^+(\Lambda_f\times_2 S^\infty)]$ is

generated by the commutators of subgroups $\pi_2(V, M)$, $\pi_1^{(+)}(M) \times T_2$ and the commutators between them:

$$[(x, e, 1), (e, a, 1)]$$
 and $[(x, e, 1), (e, a, m)]$
for $x \in \pi_2(V, M), a \in \pi_1^{(+)}(M)$.

 $[\pi_1^-(\Lambda_f \times_2 S^\infty)]^2$ is generated by $(x, a, 1)^2$ and $(x, a, m)^2$ for $x \in \pi_2(V, M)$, $a \in \pi_1^{(-)}(M)$. It follows from Lemma 3.3 that $H_1(\Lambda_f \times_2 S^\infty, M \times P^\infty; Z_{\Psi(f)})$ is isomorphic to the quotient group of $\pi_2(V, M)$ by the normal subgroup generated by the commutators of $\pi_2(V, M)$ and the following elements:

$$x \cdot h_a(x^{-1}), x \cdot h_a(x)$$
 for $x \in \pi_2(V, M), a \in \pi_1^{(+)}(M),$
 $x \cdot h_a(x), x \cdot h_a(x^{-1})$ for $x \in \pi_2(V, M), a \in \pi_1^{(-1)}(M).$

Since $x \cdot h_a(x) = x^2 \cdot (x^{-1}h_a(x))$, we obtain that

$$H_{1}(\Lambda_{f} \times_{2} S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)})$$

$$\cong \frac{\pi_{2}(V, M)}{\langle x \cdot h_{a}(x^{-1}) \colon x \in \pi_{2}(V, M), a \in \pi_{1}(M) \rangle} \otimes Z_{2} = H_{2}(V, M; Z_{2}).$$

If n is odd, then

$$\pi_1^+(M \times P^\infty) = \{(e, a, 1) : a \in \pi_1^{(+)}(M)\} \cup \{(e, a, m) : a \in \pi_1^{(-)}(M)\}$$

and

$$\pi_1^+(\Lambda_f \times_2 S^\infty) = \pi_2(V, M) \cdot \pi_1^+(M \times P^\infty).$$

Hence $[\pi_1^+(\Lambda_f \times_2 S^{\infty}), \pi_1^+(\Lambda_f \times_2 S^{\infty})]$ is generated by the commutators of $\pi_2(V, M), \pi_1^+(M \times P^{\infty})$ and the commutators between them:

$$[(x, e, 1), (e, a, 1)]$$
 for $x \in \pi_2(V, M), a \in \pi_1^{(+)}(M),$
 $[(x, e, 1), (e, a, m)]$ for $x \in \pi_2(V, M), a \in \pi_1^{(-)}(M).$

 $[\pi_1^-(\Lambda_f \times_2 S^\infty)]^2$ is generated by

$$(x, a, 1)^2$$
 for $x \in \pi_2(V, M)$, $a \in \pi_1^{(-)}(M)$,
 $(x, a, m)^2$ for $x \in \pi_2(V, M)$, $a \in \pi_1^{(+)}(M)$.

By Lemma 3.3, $H_1(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)})$ is isomorphic to the quotient group of $\pi_2(V, M)$ by the normal subgroup generated by the commutators of $\pi_2(V, M)$, the elements $x \cdot h_a(x^{-1})$ for $x \in \pi_2(V, M)$, $a \in \pi_1^{(+)}(M)$ and the elements $x \cdot h_a(x)$ for $x \in \pi_2(V, M)$, $a \in \pi_1^{(-)}(M)$.

The following lemma allows us to complete the proof.

3.4. **Lemma.** Let (X, Y) be a 1-connected couple of path-connected spaces and let Z_{ϕ} be a local system on X characterized by a homomorphism $\phi \colon \pi_1(X) \to \operatorname{Aut} Z$. Then $H_2(X, Y; Z_{\phi})$ is the quotient group of $\pi_2(X, Y)$ by the normal subgroup generated by the elements

$$x^{-1} \cdot h_a(x)$$
 for $x \in \pi_2(X, Y)$, $a \in \pi_1^{(+)}(Y)$,
 $x \cdot h_a(x)$ for $x \in \pi_2(X, Y)$, $a \in \pi_1^{(-)}(Y)$,

where $\pi_1^{(+)}(Y)$ is the kernel of composition $\pi_1(Y) \xrightarrow{i_{\pi}} \pi_1(X) \xrightarrow{\phi} Z_2$, $\pi_1^{(-)}(Y) = \pi_1(Y) \setminus \pi_1^{(+)}(Y)$.

Proof. Let $\hat{\pi}_2(X,Y)$ denote the quotient group of $\pi_2(X,Y)$ presented in this lemma. Because (X,Y) is 1-connected, the singular chain complex $C_*(X,Y;Z_\phi)$ is chain homotopic to the normal singular chain complex $C_*^{(1)}(X,Y;Z_\phi)$ which is generated by singular simplexes $\sigma\colon \Delta^q\to X$ having the property that σ maps each vertex of Δ^q to the basepoint of $Y\subset X$ and maps the 1-dimensional skeleton $(\Delta^q)^1$ to Y. Each singular simplex $\sigma\colon (\Delta^2,(\Delta^2)^1,(\Delta^2)^0)\to (X,Y,*)$ determines an element $[\sigma]\in \hat{\pi}_2(X,Y)$. Since $\hat{\pi}_2(X,Y)$ is abelian, this defines a homomorphism $\psi\colon C_2^{(1)}(X,Y;Z_\phi)\to \hat{\pi}_2(X,Y)$.

We show that Ψ annihilates $\partial C_3^{(1)}(X,Y;Z_\phi)$. Let $\sigma \in C_3^{(1)}(X,Y;Z_\phi)$ be a simplex $\sigma \colon \Delta^3$, $(\Delta^3)^1$, $(\Delta^3)^0 \to X$, Y, *. Then

$$\partial \sigma = \phi(w_{\sigma})\sigma^{(0)} + \sum_{0 < i < 3} (-1)^{i}\sigma^{(i)},$$

where $w_{\sigma}\colon I\to Y$ is the restriction of σ on the edge $v_0v_1\subset\Delta^3$. If $\phi(w_{\sigma})=1$, then

$$\begin{split} \psi \partial(\sigma) &= \psi(\sigma^{(0)}) \cdot \psi(\sigma^{(2)}) [\psi(\sigma^{(1)})]^{-1} [\psi(\sigma^{(3)})]^{-1} \\ &= \psi(h_{w_{\sigma}}(\sigma^{(0)})) [\psi(\sigma^{(0)})]^{-1} \psi(\sigma^{(0)}) \psi(\sigma^{(2)}) [\psi(\sigma^{(1)})]^{-1} [\psi(\sigma^{(3)}]^{-1} \\ &= \psi(h_{w_{\sigma}}(\sigma^{(0)})) \psi(\sigma^{(2)}) [\psi(\sigma^{(1)}]^{-1} [\psi(\sigma^{(3)})]^{-1}. \end{split}$$

The homotopy addition theorem asserts that $\psi \partial(\sigma) = 0$. Similarly, if $\phi(w_{\sigma}) = -1$, then

$$\begin{split} \psi \partial(\sigma) &= [\psi(\sigma^{(0)})]^{-1} \cdot \psi(\sigma^{(2)}) [\psi(\sigma^{(1)})]^{-1} [\psi(\sigma^{(3)})]^{-1} \\ &= \psi(h_{w_{\sigma}}(\sigma^{(0)})) \psi(\sigma^{(0)}) [\psi(\sigma^{(0)})]^{-1} \psi(\sigma^{(2)}) [\psi(\sigma^{(1)})]^{-1} [\psi(\sigma^{(3)})]^{-1} = 0. \end{split}$$

Therefore ψ defines a homomorphism $\Psi\colon H_2(X\,,\,Y\,;\,Z_\pi)\to \hat\pi_2(X\,,\,Y)$. Conversely, consider each map $\alpha\colon\Delta^2\,,\,\dot\Delta^2\,,\,v_0\to X\,,\,Y\,,\,*$ as a simplex in $C_2(X\,,\,Y\,;\,Z_\phi)$. In fact, it is a cycle. It follows that there is a map

$$h: (X, Y, *)^{(\Delta^2, \dot{\Delta}^2, v_0)} \to H_2(X, Y; Z_{\phi}).$$

Now we observe the effect of homotopy. Let $F: \Delta^2 \times I$, $\dot{\Delta}^2 \times I \to X$, Y be a homotopy from α to α' . Then their homotopy classes satisfy $[\alpha'] = h_{[w^{-1}]}([\alpha])$ where $w = F|_{v_0 \times I}$ is a loop of Y based at *. Set $v_i' = v_i \times 0$, $v_i'' = v_i \times 1$ for the vertices $v_i \in \Delta^2$. We triangulate $\Delta^2 \times I$ by 3-simplexes Δ^3_1 , Δ^3_2 , Δ^3_3 and their faces where $\Delta^3_1 = v_0'v_0''v_1''v_2''$, $\Delta^3_2 = v_0'v_1'v_1''v_2''$, $\Delta^3_3 = v_0'v_1'v_2'v_2''$. Let F_i denote the 3-simplexes $F|_{\Delta^3_i} \in C_3(X,Y;Z_\phi)$. A direct calculation shows that $\partial(F_1 - F_2 + F_3) = \phi([w])\alpha' - \alpha$. It follows that their homology classes satisfy $\{\alpha\} = \phi([w])\{\alpha'\}$. Taking the quotient of h under the homotopy, we get a homomorphism $h: \hat{\pi}_2(X,Y) \to H_2(X,Y;Z_\phi)$. One can directly verify that H is the inverse of Ψ . Q.E.D.

4. Proof of Theorem 0.3

Since V is orientable and $\ker f_{\pi} \nsubseteq \pi_1^+(M)$, we have $\pi_1^{(-)}(M) = \phi$ and $\pi_2^{(-)}(V, M) \neq \phi$.

If *n* is even, then $\pi_1^+(M \times P^{\infty}) = \pi_1(M \times P^{\infty})$,

$$\pi_1^+(\Lambda_f \times_2 S^{\infty}) = (\pi_2^{(+)}(V, M) \times_h \pi_1(M)) \times_{\phi} T_2.$$

It is clear that $[\pi_1^+(\Lambda_f \times_2 S^\infty), \pi_1^+(\Lambda_f \times_2 S^\infty)]$ is generated by the commutators of subgroups $\pi_2^{(+)}(V, M), \pi_1(M) \times T_2$ and the commutators between them:

$$[(x, e, 1), (e, a, 1)]$$
 and $[(x, e, 1), (e, a, m)]$
for $x \in \pi_2^{(+)}(V, M), a \in \pi_1(M)$.

 $[\pi_1^-(\Lambda_f \times_2 S^\infty)]^2$ is generated by $(x,a,1)^2$ and $(x,a,m)^2$ for $x \in \pi_2^{(-)}(V,M)$, $a \in \pi_1(M)$. From Lemma 3.3, $H_1(\Lambda_f \times_2 S^\infty, M \times P^\infty; Z_{\Psi(f)})$ is isomorphic to the direct sum of Z with the quotient group of $\pi_2^{(+)}(V,M)$ by the normal subgroup generated by the commutators of $\pi_2^{(+)}(V,M)$ and the following elements:

$$x \cdot h_a(x^{-1}), x \cdot h_a(x)$$
 for $x \in \pi_2^{(+)}(V, M), a \in \pi_1(M),$
 $x \cdot h_a(x), x \cdot h_a(x^{-1})$ for $x \in \pi_2^{(-)}(V, M), a \in \pi_1(M).$

Notice that $x \cdot h_a(x) = x^2 \cdot (x^{-1}h_a(x))$. By the classical Hurewicz theorem, we obtain

$$H_1(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)}) \cong Z + H_2^{(+)}(V, M; Z_2),$$

where $H_2^{(+)}(V, M; Z_2)$ is the kernel of the composition $H_2(V, M; Z_2) \xrightarrow{\partial} H_1(M; Z_2) \xrightarrow{w_1(M)} Z_2$.

Now we discuss the other case. A direct computation shows that

4.1. Lemma.

$$[(x, e, 1), (\overline{x}, e, m)] = (x^2, \partial x^{-1}, 1),$$

$$[(e, a, 1), (\overline{x}, e, m)] = (h_a(\overline{x}) \cdot \overline{x}^{-1}, e, 1).$$

If n is odd, then $\pi_1^+(M\times P^\infty)=\pi_1(M)$, $\pi_1^+(\Lambda_f\times_2 S^\infty)=A\cup B$ where $A=\{(x,a,1)\colon x\in\pi_2^{(+)}(V,M),\ a\in\pi_1(M)\}$, $B=\{(x,a,m)\colon x\in\pi_2^{(-)}(V,M),\ a\in\pi_1(M)\}$. Choose an element $\overline{x}\in\pi_2^{(-)}(V,M)$. Certainly, each element of B can be uniquely decomposed as a product $(x,a,1)\cdot(\overline{x},e,m)$ where $(x,a,1)\in A$. It follows that $[\pi_1^+(\Lambda_f\times_2 S^\infty),\pi_1^+(\Lambda_f\times_2 S^\infty)]$ is generated by the commutators of subgroups $\pi_2^{(+)}(V,M),\pi_1(M)$, the commutators $[(x,e,1),(e,a,1)],[(x,e,1),(\overline{x},e,m)]$ and $[(e,a,1),(\overline{x},e,m)]$ for $x\in\pi_2^{(+)}(V,M)$ and $a\in\pi_1(M)$. $[\pi_1^-(\Lambda_f\times_2 S^\infty)]^2$ is generated by the elements

$$(x, a, 1)^2$$
, $for x \in \pi_2^{(-1)}(V, M)$, $a \in \pi_1(M)$, $(x, a, m)^2$ $for x \in \pi_2^{(+)}(V, M)$, $a \in \pi_1(M)$.

Because we have $(\overline{x}, e, m)^2 = (e, \partial \overline{x}, 1)$, the image of (\overline{x}, e, m) in $H_1(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)})$ is of order 2. By using Lemmas 3.3 and 4.1, a discussion similar to the case that n is even shows that

$$H_1(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)}) \approx H_2^{(+)}(V, M; Z_2) + Z_2 \approx H_2(V, M; Z_2).$$

5. Proof of Theorem 0.4

First of all, one can verify

5.1. **Lemma.**

$$[(x,e,1),(\overline{x},\overline{a},1)] = (x \cdot \overline{x} \cdot h_{\overline{a}}(x^{-1}) \cdot \overline{x}^{-1},e,1),$$

$$[(e,a,1),(\overline{x},\overline{a},1)] = (h_a(\overline{x}) \cdot h_{[a,\overline{a}]}(\overline{x}^{-1}),[a,\overline{a}],1),$$

$$[(e,e,m),(\overline{x},\overline{a},1)] = (\overline{x}^{-2},\partial \overline{x},1),$$

$$[(e,\overline{a},m),(\overline{x},e,m)] = (\overline{x}^{-1} \cdot h_{\overline{a}}(\overline{x}^{-1}),\overline{a} \cdot \partial \overline{x} \cdot \overline{a}^{-1}).$$

By the assumption that $\ker f_{\pi} \nsubseteq \pi_{1}^{+}(M)$ and $w_{1}(V) \neq 0$, we obtain that $\pi_{1}^{(-)}(V, M) \neq \phi$ and $\pi_{1}^{(-)}(M) \neq \phi$ and take an element $\overline{x} \in \pi_{2}^{(-)}(V, M)$ and an element $\overline{a} \in \pi_{1}^{(-)}(M)$.

If n is even, then $\pi_1^+(M\times P^\infty)=\pi_1^{(+)}(M)\times T_2$ and $\pi_1^+(\Lambda_f\times_2 S^\infty)=A\cup B$ where

$$\begin{split} A &= \pi_1^{(+)}(V\,,\,M) \cdot \pi_1^+(M \times P^\infty) = (\pi_2^{(+)}(V\,,\,M) \times_h \, \pi_1^{(+)}(M)) \times_\phi \, T_2\,, \\ B &= \pi_2^{(-)}(V\,,\,M) \cdot \pi_1^-(M \times P^\infty). \end{split}$$

It is evident that the elements of B can be uniquely decomposed as products $\xi \cdot (\overline{x}\,,\overline{a}\,,\,1)$ for $\xi \in A$. Thus $[\pi_1^+(\Lambda_f \times_2 S^\infty)\,,\,\pi_1^+(\Lambda_f \times_2 S^\infty)]$ is generated by the commutators of subgroup $\pi_2^{(+)}(V\,,\,M)\,,\,\pi_1^+(M \times P^\infty)$, and the following commutators:

$$[(x, e, 1), (e, a, 1)], [(x, e, 1), (e, a, m)], [(x, e, 1), (\overline{x}, \overline{a}, 1)],$$

 $[(e, a, 1), (\overline{x}, \overline{a}, 1)], [(e, e, m), (\overline{x}, \overline{a}, 1)]$

for $x \in \pi_2^{(+)}(V, M)$, $a \in \pi_1^{(+)}(M)$. On the other hand, $[\pi_1^-(\Lambda_f \times_2 S^\infty)]^2$ is generated by $(x', a, 1)^2$, $(x', a, m)^2$, $(x, a', 1)^2$, and $(x, a', m)^2$ for $x \in \pi_2^{(+)}(V, M)$, $x' \in \pi_2^{(-)}(V, M)$, $a \in \pi_1^{(+)}(M)$, and $a' \in \pi_1^{(-)}(M)$. By Lemmas 3.3 and 5.1, $H_1(\Lambda_f \times_2 S^\infty, M \times P^\infty; Z_{\Psi(f)})$ has a subgroup isomorphic to the quotient group of $\pi_2^{(+)}(V, M)$ by its normal subgroup H generated by its commutators and the following elements: $x^{\pm 1}h_a(x)$, $x'^{\pm 1}h_a(x')$, and $x^{\pm 1}h_{a'}(x)$ for $x \in \pi_2^{(+)}(V, M)$, $x' \in \pi_2^{(-)}(V, M)$, $a \in \pi_1^{(+)}(M)$, and $a' \in \pi_1^{(-)}(M)$. Because the elements $x'^{\pm 1}h_{a'}(x')$ are not necessarily in H for $x' \in \pi_2^{(-)}(V, M)$ and $a' \in \pi_1^{(-)}(M)$, in general the obtained quotient group $\pi_2^{(+)}(V, M)/H$ is not $H_2^{(+)}(V, M; Z_2)$.

Since $\pi_2^{(+)}(V,M)=\pi_2^{(+)}(\overline{V},\overline{M})$ and $\pi_1(\overline{M})=\pi_1^{(+)}(M)$, the quotient group of $\pi_2^{(+)}(V,M)$ by its normal subgroup, H' generated by the elements $x^{\pm 1}h_a(x)$ for $x\in\pi_2(V,M)$, $a\in\pi_1^{(+)}(M)$, is just $H_2^{(+)}(\overline{V},\overline{M};Z_2)$ by the classical Hurewicz theorem. In this quotient group, the images of $x^{\pm}\cdot h_{a'}(x)$ generate the subgroup $\langle x+T_*(x)\colon x\in H_2^{(+)}(\overline{V},\overline{M};Z_2)\rangle\subset H_2^{(+)}(\overline{V},\overline{M};Z_2)$, where $x\in\pi_2^{(+)}(V,M)$, $a'\in\pi_1^{(-)}(M)$, and $T_*\colon H_2^{(+)}(\overline{V},\overline{M};Z_2)\to H_2^{(+)}(\overline{V},\overline{M};Z_2)$ is induced by the covering involution $T\colon \overline{V},\overline{M}\to \overline{V},\overline{M}$. It follows that

 $\pi_2^{(+)}(V,M)/H\cong H_2^{(+)}(\overline{V},\overline{M};Z_2)/\langle x+T_*(x)\colon x\in H_2^{(+)}(\overline{V},\overline{M};Z_2)\rangle$ and the first part of Theorem 0.4 is proved.

If n is odd, then

$$\pi_1^+(M \times P^\infty) = \{(e, a, 1) : a \in \pi_1^{(+)}(M)\} \cup \{(e, a', m) : a' \in \pi_1^{(-)}(M)\}$$

and

$$\pi_1^+(\Lambda_f \times_2 S^{\infty}) = \pi_2^{(+)}(V, M) \cdot \pi_1^+(M \times P^{\infty}) \cup \pi_2^{(-)}(V, M) \cdot \pi_1^-(M \times P^{\infty}).$$

Since the elements of $\pi_2^{(-)}(V\,,\,M)\cdot\pi_1^-(M\times P^\infty)$ can be decomposed as products $\xi\cdot(\overline{x}\,,\,e\,,\,m)$ for $\xi\in\{\pi_2^{(+)}(V\,,\,M)\cdot\pi_1^+(M\times P^\infty)\}$, the commutator group $[\pi_1^+(\Lambda_f\times_2S^\infty)\,,\,\pi_1^+(\Lambda_f\times_2S^\infty)]$ is generated by the commutators of subgroups $\pi_2^{(+)}(V\,,\,M)\,,\,\pi_1^+(M\times P^\infty)$, and the following elements:

$$[(x, e, 1), (e, a, 1)], [(x, e, 1), (e, a', m)],$$
$$[(x, e, 1), (\overline{x}, e, m)], [(e, a, 1), (\overline{x}, e, m)], [(e, \overline{a}, m), (\overline{x}, e, m)]$$

for $x \in \pi_2^{(+)}(V, M)$, $a \in \pi_1^{(+)}(M)$, $a' \in \pi_1^{(-)}(M)$. $[\pi_1^-(\Lambda_f \times_2 S^\infty)]^2$ is generated by the elements $(x, a', 1)^2$, $(x, a, m)^2$, $(x', a, 1)^2$ for $x \in \pi_2^{(+)}(V, M)$, $x' \in \pi_2^{(-)}(V, M)$ and $a \in \pi_1^{(+)}(M)$, $a' \in \pi_1^{(-)}(M)$. From Lemmas 3.3, 4.1, and 5.1, it follows that $H_1(\Lambda_f \times_2 S^\infty, M \times P^\infty; Z_{\Psi(f)})$ has a subgroup which is isomorphic to $H_2^{(+)}(V, M; Z_2)$. On the other hand, since $(\overline{x}, e, m)^2 = (e, \partial \overline{x}, 1)$ the image of (\overline{x}, e, m) in $H_1(\Lambda_f \times_2 S^\infty, M \times P^\infty; Z_{\Psi(f)})$ is of order 2. Hence

$$H_1(\Lambda_f \times_2 S^{\infty}, M \times P^{\infty}; Z_{\Psi(f)}) \approx H_2^{(+)}(V, M; Z_2) + Z_2 \approx H_2(V, M; Z_2).$$

ACKNOWLEDGMENT

The author would like to thank the referee for his helpful suggestions and pertinent comments.

REFERENCES

- H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956.
- J.-P. Dax, Étude homotopique des espaces de plongements, Ann. Sci. École Norm. Sup. 5 (1972), 303-377.
- 3. N. Habegger, Obstruction to embedding disks. II (a proof of a conjecture of Hudson), Topology Appl. 17 (1984), 123-130.
- 4. _____, Embedding up to homotopy type—the first obstruction, Topology Appl. 17 (1984), 131-143.
- 5. A. Haefliger, *Plongements différentiables de variétés dans variétés*, Comment. Math. Helv. **36** (1961), 47-82.
- 6. _____, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1963), 155-176.
- 7. _____, Plongements de variétés dans le domaine stable, Seminaire Bourbaki, 150, no. 245 (1962/63).
- 8. A. Haefliger and M. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135.

- 9. A. Hatcher and F. Quinn, Bordism invariants of intersections of submanifolds, Trans. Amer. Math. Soc. 200 (1974), 327-344.
- 10. J. P. F. Hudson, Piecewise linear embeddings, Ann. of Math. (2) 85 (1967), 1-31.
- 11. L. L. Larmore, *Isotopy groupe*, Trans. Amer. Math. Soc. 239 (1978), 67-97.
- 12. Liu Rong, On the classification of embeddings of n-manifolds into 2n-manifolds in the same regular homotopy class (to appear).
- 13. H. A. Salomonsen, On the existence and classification of differential embeddings in the metastable range, Aarhus mimeographed notes, 1973.
- 14. R. M. Switzer, Algebraic topology—Homotopy and homology, Springer-Verlag, 1975.
- 15. C. T. C. Wall, Classification problems of differential topology. IV, Topology 5 (1966), 73-94.
- 16. G. W. Whitehead, Homotopy theory, M.I.T. Press, Cambridge, Mass., 1966.

Beijing (21) Century Market Research Co., Everygreen Garden, Zhongshan Park, Beijing P.R. China, P.C. 100031